Numerical simulation of multiple species detection using hydrodynamic/electrokinetic focusing

نویسندگان

  • J. HAHM
  • A. BESKOK
چکیده

In this paper we present the numerical simulation-based design of a new microfluidic device concept for electrophoretic mobility and (relative) concentration measurements of dilute mixtures. The device enables stationary focusing points for each species, where the locally applied pressure driven flow (PDF) counter balances the species’ electrokinetic velocity. The axial location of the focusing point, along with the PDF flowrate and applied electric field reveals the electrokinetic mobility of each species. Simultaneous measurement of the electroosmotic mobility of an electrically neutral specie can be utilized to calculate the electrophoretic mobility of charged species. The proposed device utilizes constant sample feeding, and results in time-steady measurements. Hence, the results are independent of the initial sample distribution and flow dynamics. In addition, the results are insensitive to the species diffusion for large Peclet number flows (Pe > 400), enabling relative concentration measurement of each specie in the dilute mixture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection

This paper presents an innovative micro flow cytometer which is capable of counting and sorting cells or particles. This compact device employs electrokinetic forces rather than the more conventional hydrodynamic forces technique for flow focusing and sample switching, and incorporates buried optical fibers for the on-line detection of cells or particles. This design approach results in a compa...

متن کامل

Investigation of electrokinetic mixing in 3D non-homogenous microchannels

A numerical study of 3D electrokinetic flows through micromixers was performed. The micromixers considered here consisted of heterogeneous rectangular microchannels with prescribed patterns of zeta-potential at their walls. Numerical simulation of electroosmotic flows within heterogeneous channels requires solution of the Navier-Stokes, Ernest-Plank and species concentration equations. It is kn...

متن کامل

Numerical simulation of turbulent flow around the dtmb4119 propeller in open water conditions

In this study, ANSYS-FLUENT packages are employed to simulate the turbulent flow around DTMB4119 propeller in open water conditions. In order to form a mesh, the multiple reference frame (MRF) methodology is used. The results are compared with the experimental results and a good conformity is obtained, which endorses numerical simulation. Furthermore, the  turbulence model is used, which is sup...

متن کامل

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

Numerical simulation of flow hydrodynamic around dolphin body in viscous fluid

The biomimetic and hydrodynamic study of aquatic animals is one of the most challenging computational fluid dynamics topics in recent studies due to the complexity of body geometry and the type of flow field. The movement of the aquatic body, and particularly the tail section and the corresponding movement of fluid around the body, causes an unsteady flow and requires a comprehensive study of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005